Name: Solution

(9 points; 10 minutes)

Statistics 300

Exam #3

1. Use the row percentages in the table to test the idea that the percentage of Phoenix Suns fans that live in California is the same as the percentage of Sacramento Kings fans that live in Arizona.

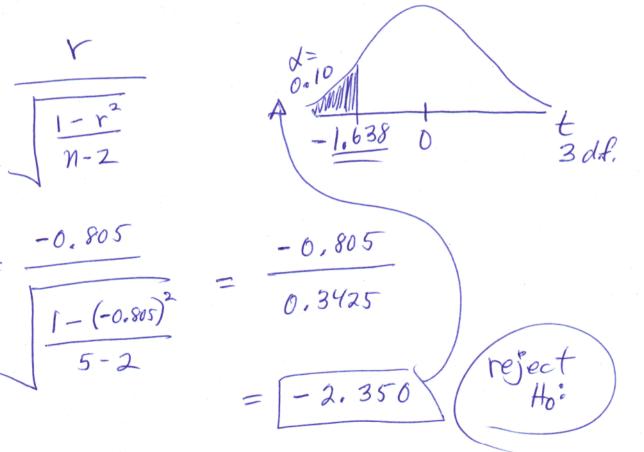
Favorite **Home State** Row Use a 5% significance level for this test. Basketball Team AZ CA WA Total The data represent truly random **Phoenix Suns** 68% 15% 12% 190 samples of Suns, Kings, and Sonics 21% 7% 191 Sacramento Kings 68% fans. Seattle Sonics 11% 18% 81% 219 $(P_k - P_5) = 0$ $(F_k - P_5) = P_{SUNS}(CA)$ Pr=0.21 N=191 so XK=40 Pr = 0.15 N= 190 $X_{s} = 29$ Hi (PKIA # PSIC) 70 d=0.05 in 2 tails Test Statistic: Since "O" difference is hypothesized, do F and \$ $(\hat{p}_{1} - \hat{p}_{2}) - (p_{k} - f_{5})_{c}$ $\overline{p} = \frac{all successes}{all trials} = \frac{40 + 29}{190 + 191}$ F9 $=\frac{69}{281}=0.181$ $\bar{q} = 0.819$ $\begin{array}{r} \hline p_{0} & Not \\ \hline teject H_{6}^{2} \end{array} = \underbrace{ \begin{array}{c} (0.2(-0.15) - 0 \\ \hline (0.181)(0.8(9) + (0.181)(0.8(9) \\ \hline 191 + \hline 191 \end{array} \\ \hline \end{array} \\ \end{array} \end{array} }_{191}$ x(2 = $= \frac{0.06}{0.0395} = 1.52$ x12 = 0.025 1.025 1.96 (

Name: Solution

(8 points; 8 minutes)

2. Is there a linear relationship between daily average temperature and daily average wind speed? Use the data in the table for a random sample of five daily values to test the claim that mean temperature and mean wind speed are negatively correlated. (Let $\alpha = 0.10$ for this test.)

y ang, wind Claim: speed and daily average H₀: $\rho < 0$ H₁: $\mathcal{L} = 0.1D$


Fall 2011 Tue/Thu 7:00 - 9:05 pm

Day	Mean Temp. °F	Mean Speed m/s
1	91.9	15.7
2	81.4	13.8
3	93.2	21.5
4	70.8	33.6
5	100	2.1

N=5 df=3

-0,805 r =from calculato

test statistic :

Name: Solution

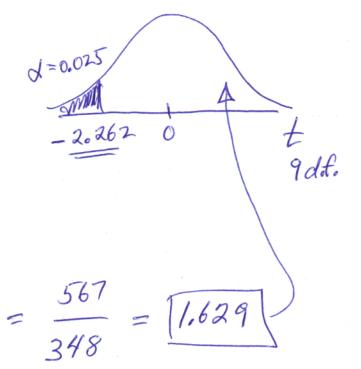
Fall 2011 Tue/Thu 7:00 - 9:05 pm

(9 points; 10 minutes)

Statistics 300

Exam #3

3. Use the summary statistics for a random selection of Fridays and Saturdays to test the claim that the average number of cars on a Sacramento freeway is at least 1000 more on Fridays than it is on saturdays. (Use a 0.025 significance level for this test.) Differences in average traffic on Fridays are known to be larger than they are on Saturdays.


 $\mu_{\rm F} \geq \mu_{\rm S} + 1000$ $H_0: (\mu_F - \mu_s) \ge 1000$ $H_{1}: \frac{(\mu_{F} - \mu_{5}) < 1000}{\chi = 0.025} \text{ left fail}$

on Saturdays. $\mathcal{O}_F > \mathcal{Q}_S$	D_0	Not Poor	d do USL smaller of
Sample Statistic	Fridays	Saturdays	smaller of df and
N =	10	16	"r dfs
Average =	38,378	36,811	
Standard Deviation =	838	901	
d+		$df_s = 1$	5

Test Statistic

 $(\overline{\chi}_{F} - \overline{\chi}_{S}) - (\mu_{F} - \mu_{S})_{O}$ $\frac{S_F^2}{n_E} + \frac{S_S^2}{n_S}$

(38378-36811)-1000 $\frac{(838)^2}{10} + \frac{(901)^2}{16}$

Do Not Ho:

Name: Solution

Fall 2011 Tue/Thu 7:00 - 9:05 pm

(9 points; 10 minutes)

4. Use the survey results given in this problem to test the claim that the proportion of prison inmates who return to prison after being released is independent of the type of crime for which they were convicted. Use a Type I error rate of 0.05 for this test.

lable Con tingency H.: (% return to prison Type of **Returned to Prison** Kow Crime No Yes total crime 65 100 Violent 35 69 3 Felony 100 26 74 Non-violent 3 69 Felony **H**₁: 100 Violent 31 69 169 31 Misdemeanor 100 68 Non-violent 32 3 69 Misdemeanor x = 0.05 right tail Column Total 400 124 276 $d_{0}f_{0} = (r-1)(e-1) = (4-1)(2-1) = (3)$ (O-E)/E (row total)(col. total) (O-E)/E 0,05 7, 815 2 0,23 0.52 0.36 0.81 Obs-Exp + 0,00 1.96 0,00 + 104 0.01 0,03 .96 Do Not reject Ho:

Name:

(13 points; 13 minutes)

Statistics 300

Exam #3

5. Daily air pollution measurements from communities that are near one another usually have a linear relationship to one another. Use the data for Chico and for Yuba City to answer the questions on this page and the next page.

	-	(Y)		
	Day	Yuba City	Chico	Relationship of Daily Pollution at Two Cities
	1 2 3 4 5 6	75 84 88 57 46 54	103 96 128 75 51 82	90 85 80 75 70 65
(a)				$\begin{array}{c} 70 \\ 65 \\ 60 \\ 55 \\ 50 \\ 45 \\ 40 \\ 50 \\ 60 \\ 70 \\ 80 \\ 90 \\ 100 \\ 110 \\ 120 \\ 130 \\ \hline \end{array}$
(D)	Use your c determine the line tha pollution a	the equati at best pre	on of dicts	pollution at Chico. equation = $Y = 13.68 + (0.602)(X)$
	Plot your li	e predicted	d pollution a	t Yuba City when pollution at Chico is 100? y'_{1} 73.9
				(100) or from calculate ion at Chico and Yuba City on all days? $0.912 = 1$
(f)				in pollution levels at Yuba City for this $0.8319 = r^2$ e levels of pollution at Chico?
(g)			ion in the Yu $\sum (y - $	The value is: $1503.3 = S_y^2(n-1)$
(h)	For the "ex		variation in t <u>S</u> (ŷ-	he Yuba City pollution data: $(\underline{y})^2$ The value is: $1250.6 = (\underline{total})(r^2)$ In the Yuba City pollution data: $(\underline{y})^2$ The value is: $252.7 = \underline{total} = explained$
(i)	For the "u		$\sum (y -$	n the Yuba City pollution data: $(\hat{y})^2$ The value is: $252.7 = explained$

Solution

Fall 2011 Tue/Thu 7:00 - 9:05 pm

(2 points; 2 minutes)

Name:

Statistics 300

Exam #3

6. Continue using the Chico and Yuba City pollution data to answer the questions below.

(a) For the "standard error of estimate" in relating Yuba City pollution to Chico pollution:

The expression is: <	Z(y-9)2 n-2	The value

7.95 is: $\frac{u N e x p b u N e l}{m - 2} = \frac{252.7}{6 - 2} = 7.95$

solu Name:

Fall 2011 Tue/Thu 7:00 - 9:05 pm

1

Um-

ho

m

are

(10 points; 10 minutes)

7. Experts tell you that variability in annual income is the same for Engineering graduates, whether they are male or female. Use the data for two random samples in the table below to prepare a 90% confidence interval for the difference between the mean income of all male Engineering graduates and the mean income of all female engineering graduates.

so, pool variances

and add deg. I freede

.

			$90\% CI(\mu_m - \mu_F) =$
Incomes in '	1000's of D	ollars	$(\overline{X}_{M} - \overline{X}_{F}) \pm t_{\alpha/2} \frac{S_{pool}^{2}}{N_{M}} + \frac{S_{pool}^{2}}{N_{F}}$
Sample	Ger	nder	$(\chi_m - \chi_F) - \zeta_{\alpha/2} = 1$
Statistic	Male	Female	N=KAN NF
N =	12	18	$d = \frac{1}{1 - contid}.$ $= 1 - 0.90$ $(44.8 - 47.8) \pm 1.701$ 25.73 ± 25.73
Average =	44.8	47.8	= 1 - 0.10 = 0.10 in 2 tub $12 - 18$
Std. Deviation =	5.6	4.7	$f_{alz} = 1.701$ = (-3) ± (1.701)(1.890)
$S_{pool}^{2} = -$ = (5.0)	2	$\frac{1}{10} + S_{10}^{2}$ -1) + (1) + (4.7) ² (18-1)	$= (-3) \pm 3.21$ $= (-3) \pm 3.21$ $= (-3) \pm 3.21$ $(18-1)$ $= (-3) \pm 3.21$

01

Based on your interval is it reasonable to claim that male Engineering graduates earn more on average than female Engineering graduates earn.

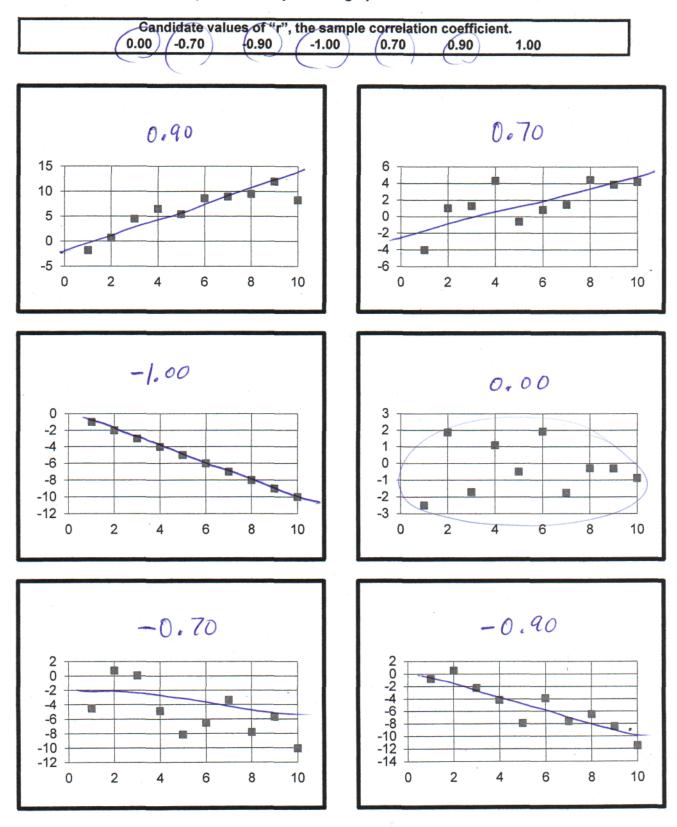
Yes	No	Why?	Because	- 16	$\mu_m >$	μ_{F}	, $(\mu_m - \mu_F) > 0$, and
			values	>0	are	ìn	the interval.

Based on your interval is it reasonable to claim that male Engineering graduates earn less on average than female Engineering graduates earn.

Yes

r

No


Why?

Solution

Statistics 300 Exam #3 Name:

(6 points; 6 minutes)

8. Connect each picture with one of the candidate "r" values by writing the appropriate candidate "r" value in the space at the top of each graph.

Name:

(9 points; 9 minutes)

9. Based on the statistics shown below, construct an 84% confidence interval for the difference between the percentage of 15 year old girls that have a personal cell phone and the percentage of 15 year old boys that have a personal cell phone. (For the test, let $\alpha = 0.05$.)

Sample Statis	tics		SHOL CT (D-D) -
Personal	15 Yea	ar Old	84% CI (Pg - Pb) =
Cell Phone	Girls	Boys	1 2 A X 7 Rall (Parto)
Yes	90	51	g to F412 Mg + Fri
No	45	41	$(\hat{P}_{g} - \hat{P}_{b}) \pm Z_{12} \hat{P}_{g} \hat{e}_{g} \pm \hat{P}_{b} \hat{e}_{b}$
	n=185	77=92	(1g 06) = 2d/2 1g 6g + 1b66
	TIERS	A 5	1 ng nb
	= 90	P5= 9	2
	g=135		$= (0.667 - 0.554) \pm (.554)(.446)$
	= 0.667	= 0	1.41 (.667)(.333) (.554)(.446)
	n 22	2 9,=	0.446 = (0.001-0.331) + (0.667)(0.333) + (0.554)(0.446) + (0.446
Ť	(=0.55)	= 0 3 96=	
			$= 0.113 \pm (1.41)(0.0658)$
Intidence	2 = 0.	.84	
= 1-confi	J = 0	.16	= 0.113 = 0.093
-1-UNT	n	AF	1.01
$\alpha/2$	= 0.	00	$\frac{100}{1000} = 0.020 < (p - p) < 0.206)$
Z	= = 10	41 -1	4 100793 L g b
1	-		ble to claim that the percentage of 15 year old boys that have
			the percentage of 15 year old girls that have a personal cell
nhone?			

Yes	No	Why?	If (g>Bg), then (Ig-Br) would be < 0,		
			and No Values loss than zero		
			are in the interval:		

Statistics 300 Solution Fall 2011 Exam #3 Name: Tue/Thu 7:00 - 9:05 pm (9 points; 7 minutes) 10. Use the information on this page to complete the Analysis of Variance table and test Use p-value the claim that milk from nine different producers has the same average "shelf life" (number of days before milk goes bad). Use a 10% significance level for the test. =(8)(9.818) 9 818/4820 **AOV Table** Source SS df MS F p-value 50 8 78.54 2.0369 Producer 9.818 0.0474 < 0.10 123 4.820 592.866 Error X 131 Total 671.41 92.866 -Ma N=(32 H₀: Not Hos -78.544) 671.41 H₁: at = 0+10 Shelf Lives (in "days") of Milk samples from Nine Producers н Α в С D Е F G L

	15.6	14.7	17.2	16.1	14.5	16.2	14.1	13.2	17.6
	11.1	11.7	13.5	15.5	16.0	12.7	11.7	15.7	14.0
	14.7	17.9	14.1	10.4	14.9	14.4	16.6	16.2	12.5
	16.2	16.1	14.2	11.8	13.9	13.4	14.4	18.4	12.7
	18.2	16.2	13.9	12.6	17.1	13.7	10.4	13.8	15.8
	14.8	13.1	17.1	12.0	14.1	16.4	11.9	18.5	12.6
	15.3	12.9	14.0	13.7	13.8	15.8	10.9	16.1	12.0
	14.5	12.0	14.9	14.4	15.2	8.7	14.3	9.0	13.7
	14.3	13.1	17.2	17.2	17.8	14.6	10.3	13.6	14.8
	16.3	12.3	15.4	11.4	16.3	17.7	14.1	16.6	12.6
	13.8	13.0	13.2	15.9		16.7	12.7	14.8	16.5
	18.8	13.9	18.2	16.6		14.3	12.9	13.5	17.6
	11.6	18.1	13.9	10.9			12.4	13.1	10.9
	12.6	14.7	18.7	14.2			7.3	14.5	16.1
	12.5	13.4	14.0	13.0			12.2	14.3	
	10.5	10.7					13.3	17.6	
		13.1					18.0		
_	\frown				\frown	\frown	\bigcirc		\bigcirc
	(16)	(17)	(15)	(15)	(10)	(12)	17	(16)	(14
	14.4	13.9	15.3	13.7	15.4	14.6	12.8	14.9	14.2
	2.4	2.1	1.9	2.2	1.4	2.4	2.5	2.4	2.2

Name: Solution

Fall 2011 Tue/Thu 7:00 - 9:05 pm

(9 points; 10 minutes)

11. Two programs for encouraging school attendance were studied at five schools. At each shool, half of the students were randomly assigned to Method A and the other half were assigned to Method B. Use the data below to prepare a 98% confidence interval for the difference between the population means for the two methods.

matched Pairs

1000's of Student-Days of Attendance						
School	Method A	Method B				
1 2 3 4 5	70.4 74.9 64.3 80.8 76.3	69.4 78.9 68.3 83.8 78.3				
mean =	73.3	75.7				
st. dev. =	6.27	6.65				

diff	
1.0 -4.0 -4.0 -3.0 -2.0	
-2.4 =d	
2.07 = 5	d

5 = n

4 = d.f.

98% CI (4A-MB) = 98% CI (Ha) = $\overline{d} \pm \overline{t}_{a_{12}} \left(\frac{S_d}{\overline{L}} \right)$

 $= (-2.4) \pm 3.747 \frac{(2.07)}{1-1}$

= (-2,4) ± (3,747)(0,9257)

 $= (2, 4) \pm 3.47$

-5.87 < (\$A-\$M_B) < 1.07

Contidence = 0.98 d = 1 - confid = 0.02in 2 tails

typ = 3,747

Solution

Name:

Fall 2011 Tue/Thu 7:00 - 9:05 pm

(8 points; 8 minutes)

12. Five schools competed for best daily attendance. The competition lasted for 180 days. Use the results below to test the claim that all of the schools were equally likely to win on each of the 180 days during the competition.
 (Let alpha be 0.025 for this test.)

Goodness-of-Fit OR Multi-Nomial Exp. (0-E)/E Obs. Count Ho: All schools were equally of Davs School school won likely win on each day 36 \mathcal{O} Α 36 1.36 36 В 29 Not the: H₁: С 0.03 37 36 36 D 47 3.36 Е 31 36 2 = 0.025 right tail total = 180 = (5.44 k=5 df = k - 1 = (4)If all schools whe equally likely to win on each day, then the expected count for each d= 0,025 Hdf school is (180) (-1) = 36