(9 points: 10 minutes)

1. To compare the quality of cakes cooked in a microwave oven to cakes cooked in a conventional oven, developers prepared seven cake recipes. Half of each recipe was cooked in a microwave oven and the other half of each recipe was cooked in a conventional oven. The quality of the cakes was judged by an expert panel and scored from 0 to 10. Treat the data below as quantitative and use them to make a 90% confidence interval for the difference in quality between microwave and conventional ovens.

	Quali	ty of Cakes	
	0	ven	Diff.
Recip	Microwave	Conventional	C - M
1	5	9	4
2	6	9	3
3	6	9	3
4	8	6	-2
5	8	10	2
6	8	10	2
7	5	7	2

Claim:	
H ₀ :	
H₁:	

(9 pc	inte	. 1	n m	inut	20
13 00	כווות		U 111	mu	CO

2. Use the data from the cake study in problem #1 to test the claim that conventional ovens are better than microwave ovens for cooking cakes, so the quality of cakes from conventional ovens is more than 1/2 point better on average than the quality of cakes from microwave ovens. Use a 5% significance level for your test.)

Claim:		 	
H ₀ :	 		
H ₁ :			

(8 points; 7 minutes)

3. Use the summary statistics for a random selection of Saturdays in September at Folsom Lake to test whether the mean number of boats on the lake decreases by more than 100 boats when the temperature is less than 70°F compared to the number of boats when the temperature is greater than 90°F. Use a 0.025 significance level for your test. Variability in the number of boats is greater during cold weather than during hot heather.

Sample	Temp.	Temp.
Statistic	< 70	> 90
days =	12	18
<u>x</u> =	217	336
s =	68	45

Solutions for problems on 12 page. 1) This is a matched-pairs problem, because the values in each row are attached to the recipe listed in the first column. "Test" chairm that Make a 90% CI (µc-µm) where "c" is for conventional oven and "m" is for microwave oven. Let Ma = Mc- Mm. Then 90% CI (Mc- Mm) = 90% CI (Ma) $= d \pm t_{12} \left(\frac{54}{17} \right) = 2 \pm 1.943 \left(\frac{1.915}{17} \right)$ Put the <u>differences</u> in the calculator to get = 2 ± 1.41 d = 2=[0.59 < Md < 3.41]). $\frac{5}{d} = 1.915$ (equivalently) n = 7 df. = 6(=[0.59 < (µc-µm) < 3.41]) d=1-confidence

=1-0.90

t = 1.943

= 0.10 in 2 tails

or 0.05 in 1 tail

Extra question: Is it reasonable to claim that conventional oven results are at least one quality point better than the micro wave result?

Answer: No. If the statement is true, then (Me-Mm) ≥ 1.

But, there are values tess than 1 in the CI, which is the reasonable range for the true (Mc-Mm).

#2. Same data as used for problem #1. This is a hypothesis test. Claim: quality from conventional ovens is more than 1/2 point better than quality from microwaves. Symbolically: $\mu_{c} = \mu_{m} + \frac{1}{2}$ (conventional more than) ($\frac{1}{2}$ point better than microwave) d= C-M d = 2 50: (Mc-Mm) > 0.5

Ho: (µc-µm) ≤ 0.5 Hi: (Mc- Mm) > 0,5 d=0.05 in right tail Sd = 1.915 df = 6+ = 1.943

Test Statistiz: = (Hc- Mm)

$$\frac{d - \mu_d}{s_d / m} = \frac{2 - 0.5}{(1.915 / 17)}$$

$$=\frac{1.5}{0.7238}=2.072$$

#3. Test of difference between two means. For convenience, I will use (= cold = (<70°) and (= hot = (>90°). Test whether Mc < My-100 Note: 0 > 0 Date M+ - 100 > Mc Cold Hot (MH - Mc) > 100 Do Not pool 18 M= 12 smaller of the Ho: (MH -Mc) ≤ 100 17 df = (1) two det. H: (MH-Mc) >100 d=0.025 right tail 336 X = 217

S = 68 45

 $\frac{(\overline{\chi}_{H} - \overline{\chi}_{C}) - (\mu_{H} - \mu_{C})}{(\overline{\chi}_{H} - \overline{\chi}_{C}) - (\mu_{H} - \mu_{C})} = \frac{(336 - 217) - 100}{(45)^{2} + (68)^{2}} = \frac{19}{22.3} = 0.852$ $\frac{(336 - 217) - 100}{(18)^{2} + (68)^{2}} = \frac{19}{22.3} = 0.852$

(8 points: 10 minutes)

5. Use the data on people's experience using two medications to help reduce the duration of a cold. Test the claim that the proportion of people who still have a cold after 4 days is smaller with Medication A than with medication B. (Use a Type 1 error rate of 5% for this test.)

4-day	Medi	cation
Condition	Α	В
No cold	27	22
Still Sick	63	88
Total	90	110

Claim:	 	
H ₀ :		
H ₁ :		

(7 points: 8 minutes)

6. Use the data from problem #5 to make a 95% confidence interval for (p_B - p_A), the difference between the proportions of people still having a cold after 4 days of taking medication B and medication A. Then, use your confidence interval to answer the question at the end of this problem.

Based on your confidence interval, is it reasonable to say that $p_B < p_A$? Circle answer and explain.

YES	Why?	
NO		

(8 points; 9 minutes)

7. Based on the statistics shown below, test the claim that the percentage of 15 year old girls that have a personal cell phone is greater than the percentage of 15 year old boys that have a personal cell phone. (For the test, use a Type 1 error rate of 0.05.)

Sample Statistics

Personal	15 Ye	ar Old
Cell Phone	Girls	Boys
Yes	90	57
No	45	35

H ₀ :				
()				

Solutions for problems on 2nd page. (5) Hypothesis test concerning the proportion (p) of people who still have a cold after 4 days. Claim: PA L PB A = used medication A B = used medication B $\hat{\gamma}_{A} = \frac{63}{90} = 0.7$ Ho: (PA-PB)≥0 $\hat{P}_{B} = \frac{88}{110} = 0.8$ H: (PA-PB) < 0 d = 0.05 left tail Because "O" is the hypothesized difference, we use p and q: p = all "successes" = 63 + 88 = 151 = 0.755 Test Statistic: $(\hat{p}_A - \hat{p}_B) - (p_A - p_B)_o$ PR + PR $\frac{-0.1}{(.755)(.245)} = \frac{-0.1}{0.0611} = \frac{-0.1}{10}$

#6) Using same data as in (#5), make 95% CI $(p_B - p_A) = (\hat{p}_B - \hat{p}_A) \pm Z_{1/2} \left| \frac{\hat{p}_B \hat{q}_B}{N_D} + \frac{\hat{p}_A \hat{q}_A}{N_A} \right|$

$$\hat{\gamma}_{A} = 0.7$$
 $\hat{\gamma}_{B} = 0.8$
 $\hat{q}_{A} = 0.3$ $\hat{q}_{B} = 0.2$
 $N_{A} = 90$ $N_{B} = 1/0$

$$\hat{q}_{A} = 0.3 \qquad \hat{q}_{B} = 0.2 \qquad = (0.8 - 0.7) \pm 1.96 \qquad \frac{(0.8)(0.2)}{110} + \frac{(0.7)(0.3)}{90}$$

$$N_{A} = 90 \qquad N_{B} = 1/0 \qquad = 0.1 \pm (1.96)(0.0615)$$

confidence = 0.95 £ = 0.05 d/2 = 0.025

$$= \left[-0.021 < (p_B - p_A) < 0.221 \right]$$

= 0.1 ± 0.121

Is it reasonable to say that PB is less than PA? (Yes) Because, if (PB < PA) then (PR-PA) < 0, and there are values in The CI (PB-PA) that are <0. The CI is the reasonable range for the true difference (PB-PA).

#7

Test claim: % of 15-year old girls that have personal cell phone is greater than % of 15-year old boys with such phones.

Personal	15 ye	ar old
Cell Phone		Boys
Yes	90	57
No	45	35
Total	13 5	92
p	= 0.667	0.620
g	= 0.333	0.380
r—	90+57	

$$\vec{p} = \frac{90+57}{135+92} = 0.648$$

$$\vec{q} = 0.352$$

Test Statistic

Because the hypothosized difference = 0, use p and q in denominator of the test statistiz

(10 points; 10 minutes)

Compare the amount of energy per kilogram of two "biomass fuels" by testing the
possibility that the average energy for Fuel A is more than 5 more than the average energy
for Fuel B. The fuels are from very different sources, so it is likely that the variability of energy
content from sample to sample is not the same. (Use a = 0.05 for this hypothesis test.)

Sample	Fuel A	Fuel B
1	90	88
2	79	72
3	87	66
4	86	74
5	73	
$\overline{X} =$		
s =		
n =		

(9 points; 10 minutes)

5. Use the data below to prepare a 98% confidence interval for the difference between the proportion of college graduates that own a home and the proportion of those who have not graduated from college that own a home. The data come from random samples of 500 from each group.

College	Own a Home		
Degree	Yes	No	
Yes	313	187	
No	218	282	

Based on your confidence interval, is it reasonable for someone to claim that the proportion of college graduates that own a home is 60% but the proportion of non-graduates is 45%?

YES	NO	Why?	

Solutions for problems on 3rdpage. (#1) Test claim: average energy for Fuel A is more than 5 more than the average energy for Fael B Symbolic form : MA > MB+5

To more Than Find B) (more thanks So : $(\mu_A - \mu_B) > 5$ $H_o: (\mu_A - \mu_B) \leq 5$ Problem says that variability is likely to be different for The two fulls, so: $O_A \neq O_B^2$ $H: (\mu_A - \mu_B) > 5$ d=0.05 night tail Po Not pool variances. Use smaller of d.f. A and d.f. B $\overline{\chi} = 83$ 5 = 6.89 9,31 n = 5 df = 4 Test Statistic

#5) Use the data to wake: 98% CI(P-PN) proportions that
where Y = yes for college degree

N = NO for college degree

$$\frac{98\%(P_{y}-P_{N})=(\hat{P}_{y}-\hat{P}_{N})\pm Z_{1/2}}{d=0.02} \frac{\hat{p}_{y}\hat{q}_{y}}{N_{y}} + \frac{\hat{p}_{N}\hat{q}_{N}}{N_{N}}$$

$$\frac{Z_{1/2}=0.01}{Z_{1/2}=2.33} = (0.626-0.436) \pm 2.33 = \frac{(.626)(.374)}{500} + \frac{(.436)(.564)}{500}$$

$$= 0.19 \pm 2.33(0.031)$$

$$= 0.19 \pm 0.072$$

$$= \left[0.118 < (8_{y} - 8_{N}) < 0.262\right]$$

Is it reasonable for someone to claim that $P_y = 0.60$ but $P_N = 0.40$? (YES) Because then $(P_y - P_N) = 0.60 - 0.40 = 0.20$ and 0.20 is in the CI.

(8 points: 9 minutes)

9. When the economy declines, more people have to ride public transit to work (I suppose). Thirty-eight people were selected in a study of the transit time from meadowview to downtown. Use the data given here to test the claim that the time needed to ride light rail downtown from the Meadowview area is less than 10 minutes more than the time needed to drive downtown from the Meadowview area. Variability in travel minutes is not the same for driving and for taking light rail. (Use a 5% significance level for this test.)

	Sample Results for Travel Minutes needed from Meadowview to Downtown		
	Driving	Light Rail	
$\overline{X} =$	28.2	40.3	
s =	4.6	6.3	
N =	16	22	

0:	
1:	

(8 points : 8 minutes)

10. When the economy declines, more people have to ride public transit to work (I suppose). Thirty-eight people were selected in a study of the transit time from meadowview to downtown. Use the data given here to construct a 95% confidence interval for the difference in travel time needed to go from the Meadowview area to Downtown. Assume for this analysis that variation in travel times is the same for both modes of transportation.

	Sample Results for Travel Minutes needed from Meadowview to Downtown		
	Driving	Light Rail	
x =	28.2	40.3	
s =	4.6	6.3	
N =	16	22	

(7 points; 7 minutes)

9. In a recent poll of Americans, 723 had private health insurance and 288 did not. Use the results below to make a 98% confidence interval for the difference between the proportions of these two groups with respect to their approval of President Obama's Health Care policies.

Have Private Health		e of Preside Care Polici	
Insurance	Yes	No	Total
Yes	209	514	723
No	165	123	288
Total	374	637	1011

Solutions for problems on 4th page
(#9) Test the claim that time need to travel by transit from
Meadowview to Downtown (M) is less than
Meadowview to Downtown (M) is less than 10 minutes more than the time weeded to drive from
meadowniew to Dountoun (pro).
Symbolicatorn: MT < MD + 10
loss than a to more than driving
so: (MMp) < 10
Ho: (M- HD) > 10 Assume (says the problem) that
H: (1) Variability 13 Not The same
1-000 0-11 1 4
Test statistic Use smaller of d.f., and d.f.
Test statistic Use smaller of dit, and dit.
$(\bar{\chi}_{T} - \bar{\chi}_{D}) - (\mu_{T} - \mu_{D})_{o}$
$\sqrt{S^2 + S^2}$ $\sqrt{=0.05}$
$\frac{S_T^2}{N} + \frac{S_D^2}{N}$
t staff
$-\frac{1.753}{}$
(40.3-28.2)-10
$= \frac{1}{(6.3)^{2}} \frac{(4.6)^{2}}{16} = \frac{2.1}{1.768} = 1.187$ $= \frac{1.187}{16} \frac{1.187}{16} = \frac{1.187}{16} \frac{1.187}{16} = 1.1$
122 + 16 1.768 Ho:

#10) Using the same data as for #9, make a

95% CI($\mu_T - \mu_D$) But assume variances are the same ($\sigma_T^2 = \sigma_D^2$), so pool variances and add the degrees of freedom. $S_{pvol}^2 = \frac{(n_T - 1)S_T^2 + (n_D - 1)S_D^2}{(n_T - 1) + (n_D - 1)} = \frac{(22 - 1)(6.3)^2 + (16 - 1)(4.6)^2}{(22 - 1) + (16 - 1)}$ $= (31.97) \qquad df = 15 + 21 = (36)$

95% CI $(\mu_{T} + \mu_{D}) = (\bar{\chi}_{T} - \bar{\chi}_{D}) \pm \frac{t_{A/2}}{2008} \frac{S_{Pool}^{2}}{N_{T}} + \frac{S_{Pool}^{2}}{N_{D}}$ entidence = .95 $\frac{1}{4} = 0.05$ $\frac{1}{4} = 0.025$ $\frac{1}{4} = 0.028$ $\frac{1}{4} = 0.028$

Y = yes, have private health insurance

N = No, do not have private health insurance

Houte private Health ins.	Approne		(N)
Health ins.	Yes	N_{\circ}	total
les	209	514	723
No	165	123	288
these	totals at	The botton weeded.	n are

contidence = 0.98

$$d = 0.02$$

 $d_2 = 0.01$
 $Z_{d_2} = 2.33$

$$CI = (0.289 - 0.573) \pm 2.33 (289) (711) (.573)(.427)$$

$$723 + \frac{1}{288}$$

$$=(-0.284)\pm0.0785$$

$$= \left[-0.3625 \times (P_{Y} - P_{N}) \times -0.2055 \right]$$

If you did CI(PN-Py), then your OI would be